Isotonic estimation for grouped data
نویسندگان
چکیده
A non-parametric estimator of a non-increasing density is found in a class of piecewise linear functions when the data consist only of counts. An EM-Algorithm for computing the estimator is developed, and the iterates in the algorithm are shown to converge to the maximum likelihood estimator. Potential applications to distance sampling models are described and illustrated with a numerical example. c © 1999 Elsevier Science B.V. All rights reserved
منابع مشابه
Isotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles
Sometimes the relationship between dependent and explanatory variable(s) known as profile is monitored. Simple linear profiles among the other types of profiles have been more considered due to their applications especially in calibration. There are some studies on the monitoring them when the observations within each profile are autocorrelated. On the other hand, estimating the change point le...
متن کاملA General Asymptotic Scheme for Inference under Order Restrictions
Limit distributions for the greatest convex minorant and its derivative are considered for a general class of stochastic processes including partial sum processes and empirical processes, for independent, weakly dependent and long range dependent data. The results are applied to isotonic regression, isotonic regression after kernel smoothing, estimation of convex regression functions, and estim...
متن کاملEfficient regularized isotonic regression with application to gene–gene interaction search
Isotonic regression is a nonparametric approach for fitting monotonic models to data that has been widely studied from both theoretical and practical perspectives. However, this approach encounters computational and statistical overfitting issues in higher dimensions. To address both concerns, we present an algorithm, which we term Isotonic Recursive Partitioning (IRP), for isotonic regression ...
متن کاملGeneralized continuous isotonic regression
The standard isotonic regression of a vector in IRn is the solution to a least squares projection problem on the cone C of vectors with ‘increasing components’ in IRn. Generalized isotonic regression problems are isotonic optimization problems that seem to be quite different from isotonic regression problems, but in fact have the same solution. In problems of maximum smoothed likelihood estimat...
متن کاملIsotonic single-index model for high-dimensional database marketing
While database marketers collect vast amounts of customer transaction data, its utilization to improve marketing decisions presents problems. Marketers seek to extract relevant information from large databases by identifying signi6cant variables and prospective customers. In small databases, they could calibrate logistic regression models via maximum-likelihood methods to determine signi6cant v...
متن کامل